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That middle grades and high school students have
difficulties solving fraction problems is a com-
mon perception of both preservice and inservice
middle grades (6-8) and secondary (7-12) mathe-

matics teachers with whom we work. This perception is
well founded. Working with fractions, especially multipli-
cation and division within a problem context or in ratio
and proportion situations, is difficult for students at many
ages. In summarizing research on rational numbers and
proportional reasoning, Lamon (2007) articulates that
“fractions, ratios, and proportions arguably hold the dis-
tinction of being…the most difficult to teach, the most
mathematically complex, the most cognitively challenging,
the most essential to success in higher mathematics and
science…” (p. 629).

Understanding fractions, together with solving problems
in context (e.g., word problems) and algebraic under-
standing, is often identified as an area that critically affects
student success in mathematics. Wu (2009) argues that,
“Because fractions are students’ first serious excursions
into abstraction, understanding fractions is the most critical
step in understanding rational numbers and in preparing
for algebra” (p. 8). Confrey and Maloney (2010) further
articulate the broad spectrum of these issues as follows:

There is perhaps no more important conceptual area in
mathematics education than rational number reasoning.
The basis of the multiplicative concepts field (Vergnaud
1983, 1996), rational number reasoning underpins algebra,
higher mathematical reasoning, and the quantitative

competence required in science. Failure to develop
robust rational number construct reasoning and skills
in elementary and middle school continues to plague
American students. Rational number reasoning is com-
plex, and master represents cognitive synthesis—
understanding, distinguishing among, modeling, and
interweaving a remarkable assortment of distinct yet
closely related concepts over many years. (p. 968)

These struggles with understanding fractions are in

addition to the broader challenges students often face in

connecting relationships in word problems and algebraic

equations (Keiran, 2007). Recently, similar struggles have

been identified among preservice and inservice elemen-

tary, middle, and secondary mathematics teachers when

asked to model or provide representations-based solutions

to fraction word problems, with many only able to provide

solutions that are primarily procedural and in symbolic

form (e.g., Sjostrom, Olson, and Olson, 2010; Olson and

Olson, 2011). These finding raise questions about the

extent to which teachers are prepared to address these

challenges with their students.

Although mathematical content is important, the context

within which the mathematics content is situated is also

critically important. In fact, in the Common Core State

Standards for Mathematics (CCSS, 2010), the second

Standard of Mathematical Practice (SMP 2) addresses the

importance of students’ abilities to contextualize and

decontextualize quantitative relationships as follows:
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Mathematically proficient students make sense of
quantities and their relationships in problem situations.
They bring two complementary abilities to bear on
problems involving quantitative relationships: the ability
to decontextualize—to abstract a given situation and
represent it symbolically and manipulate the represent-
ing symbols as if they have a life of their own, without
necessarily attending to their referents—and the ability
to contextualize, to pause as needed during the manip-
ulation process in order to probe into the referents for
the symbols involved. Quantitative reasoning entails
habits of creating a coherent representation of the prob-
lem at hand; considering the units involved; attending
to the meaning of quantities, not just how to compute
them; and knowing and flexibly using different proper-
ties of operations and objects. (CCSS, p. 6).

Such recognition of the importance of contextualizing

mathematics is not new, but the way contextualization

occurs has historically been the topic of debate. In our dis-

cussions, we focus on the point of view offered by Boaler

(1993) (drawing on the work of Lave (1988)) who suggested

that, “the specific context within which a mathematical

task is situated is capable of determining not only general

performance but choice of mathematical procedure” (p. 13).

It is primarily through this lens that we identify our notion

of the importance of context with respect to the problem

presented in this article, namely, a problem in which certain

mathematical procedures, or in our case, representations

and models, arise as primary solution strategies.

For the past several years we have engaged in examining

the work of middle grades students as well as preservice

elementary, middle, and high school mathematics teachers

relative to how they use modeling and representation

methods to solve word problems involving fractions

(Slovin, Olson, and Zenigami, 2007; Olson, Zenigami, and

Slovin, 2008; Olson, Slovin, and Zenigami, 2009; Sjostrom,

Olson, and Olson, 2010; Olson and Olson, 2011). Four

word problems have been consistently used in these stud-

ies, and data have been collected from approximately 30

students in Grade 5, 120 students in each of Grades 6 – 8,

40 preservice elementary teachers, and 40 preservice and

inservice teachers of Grades 7 – 12.

In this paper, we analyze the responses of a few selected

students, preservice mathematics teachers, and inservice

mathematics teachers to one contextualized fraction prob-

lem using a case study approach. We analyze how individ-

uals express their understandings using the context of the

problem to mathematically model a solution without

immediately resorting to decontextualized algorithms and

discuss the suggestions we have offered elementary, middle,

and secondary mathematics teachers, as well as teacher

and school district leaders, for how to encourage students

and teachers to recognize and take advantage of opportu-

nities to more robustly develop conceptual and contextual

understandings of fraction concepts.

A Contextualized Fraction Problem
One of the four problems consistently used in our research
is the following contextualized problem called the Painting
Problem: It takes 3/4 liter of paint to cover 3/5 m2. How
much paint is needed to paint 1 m2? Explain your reasoning
and justify your answer.

Before reading responses of students and teachers given in
the article, consider the following prompts and questions as
you contemplate finding a solution to this problem:

1. What does a solution to this problem look like? What
would be considered a model for the problem situa-
tion? What is an equation for the problem situation?
How much paint is needed for a 1 square meter
board, given the parameters of the context?

2. What work or explanations would we expect to see if
this problem was being posed to 5th grade students
as their first introduction to such a problem and they
have not yet been exposed to fraction computational
procedures? What explanations (including mathe-
matical models or expressions) should be provided to
the students who are struggling or do not understand
what their procedure-based solution “means” in the
context of the problem?

3. Suppose this problem was posed to 8th or 9th grade
students (say in Algebra or Pre-Algebra) who have
not yet fully developed the expected facility with
algebra. What explanations (including mathematical
models or expressions) should be provided to enable
the students to follow the logic and mathematics of
the problem and associated discussions so that stu-
dents are reasonably comfortable with the reasoning
underlying the solution? That is, what model or repre-
sentation, different from an algebraic solution, would
likely add to students’ comprehension of the mathe-
matics of the problem (i.e., ratio and proportion)?
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These questions are given to suggest that students who
either have not yet been taught procedures for multiplying
and dividing fractions, have little experience working with
ratio, or have had these experiences and persist in a state
of procedural confusion can meaningfully engage in and
solve such problems based only on the context of the
problem. In context, students’ explanations should be
based on making sense of the context regardless of the
method of solution. The teachers’ challenge, then, is
understanding how to provide the support needed so stu-
dents at all levels make sense of their work and reasoning.

The Painting Problem was selected for two reasons: 1) An
accurate model or representation of the problem situation
almost directly provides the solution; and 2) The two frac-
tions in the problem have the same numerators and one-
to-one functional reasoning stemming from these com-
mon numerators seems natural in the context of the prob-
lem (e.g., 3/4 L covers 3/5 m2, or 3 of one thing is
“mapped” to 3 of another thing).

Selected Responses to the Painting Problem
In what follows, work samples from two 5th grade students
and one 8th grade student are examined and discussed.
These work samples illustrate several of the successful
models and representations we have seen used in solution
strategies to the Painting Problem in earlier research
efforts (Olson, Zenigami, and Slovin, 2008; Olson, Slovin,
and Zenigami, 2009; Slovin, Olson, and Zenigami, 2007).
Work samples from three preservice secondary mathematics
teachers are then shared. These work samples demonstrate
the range of teacher strategies also found in earlier
research efforts (Sjostrom, Olson, and Olson, 2010; Olson
and Olson, 2011). In particular, these teacher samples
show a range that extends from being able to show a
solution, to displaying beginnings of a solution strategy
but not fully following to a conclusion, to employing a
solution or solution strategy similar to that of the students
but more elaborate.

Student Thinking
In Figure 1, Anne1, a 5th grade student, used area models
to represent each quantity (3/4 and 3/5). She drew separate
but contiguous area regions to represent each fraction in
the problem, and made 1/4 liter and 1/5 square meter the
same height, creating unit fraction models derived from
the correspondence between 3/4 liter of paint and 3/5

square meter. In her verbal explanation of the model, Anne
articulated her use of the one-to-one correspondence
between 1/4 liter of paint and 1/5 square meter. Using this
correspondence, Anne knew covering 1 square meter (that
is, 5/5 square meter) required 5/4 liter of paint.

Anne’s original drawing only had the word square listed
for the square meter. As she articulated her reasoning,
explained her thinking, and justified her conclusion, she
felt the need to indicate what she had drawn was a repre-
sentation of a “square or rectangle.” Although she reasoned
through the problem using this rectangular representation,
she added the words “or rectangle” to the diagram. This
reasoning indicated a tension between the object being
represented (a square meter board) and what was used to
represent a square (a rectangular bar).

The impetus for this tension was, again, displayed through
her process of justifying her conclusion, and provides evi-
dence of one student’s need to verbally align her thinking
to her visual model although her visual model is perhaps
not a precise representation of the problem situation.
These issues of precision in verbal descriptions and visual
representations highlight underlying challenges in fostering
students thinking with regard to the CCSSM Standards for
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FIGURE 1: Anne’s Model

1 All student names used in this paper are pseudonyms.



Mathematical Practice. In particular, although Anne was
not as precise as she could have been with her visual
model in representing the problem context, her verbal
description eventually did precisely describe her visual
model through the process of justifying her answer.
Consequently, there are many levels of precision (SMP 6)
at play through her process of justifying her conclusion
(SMP 3).

Jason, another 5th grade student, used reasoning similar to
Anne’s but he used different notation (Figure 2). While
Jason did not draw a model of the square meter or paint,
he verbalized the relationship between 1/4 liter and 1/5
square meter using the correspondence between 3/4 liter
and 3/5 square meters, suggesting a mental model of the
problem. Jason’s thinking led him to the correct solution
(5/4 liter) with an appropriate explanation that maintained
the one-to-one correspondence until 5/5 square meters
(i.e., 1 square meter) was attained. Although Jason’s use of
the equations 3/4 = 3/5 and 1/4 = 1/5 are not mathemati-
cally correct as written, he used these notations as tools to
organize his thinking about the one-to-one relationship
inherent in the problem. This allowed him to reason
through the problem and obtain a correct solution.

Jason’s use of imprecise mathematical notation presents
another example in which such notation or symbolic
representation facilitated a student’s understanding of the
context. This instance once again illustrates the complexity
with which teachers will need to approach the implemen-
tation of the Standards for Mathematical Practice. Precision
(SMP 6) is critically important for anyone engaging in

mathematical thinking, argumentation, and justification.
Additionally, students’ emerging visual and symbolic
representations must be understood as indicators of their
present mental constructs and structures. Consequently,
although Jason’s symbolic representation proved helpful to
him in attaining and justifying a solution, his work also
presents an opportunity for his teacher to question Jason
to help him reflect on his understanding of the “meaning
of the symbols [he chose], including using the equal sign
consistently and appropriately” (CCSS, p. 7). That is, Jason’s
use of the equals sign between 1/4 and 1/5, as well as 3/4
and 3/5 (and 1¼ and 5/5), could potentially be found to
be a matter of implementing a “place holder” symbol due
to not yet having engaged in discussion and experiences
related to ratios and appropriate ratio notations.

Thus, Jason’s emerging understandings and mental con-
structs should not be wholly discounted, nor should the
teacher accept at face value his use of the equal sign as
implying “equality” simply because it facilitated the
accurate answer. Rather, Jason’s work must become an
opportunity for discussion of the mathematical content,
as well as the mathematical practices and representations
used to arrive at an answer.

At the time that Anne and Jason were solving this contex-
tualized fraction problem, they had not yet received formal
instruction related to division of fractions, ratios, or ratio
notation. Yet these students (and others) were able to
develop or visualize a model or representation that, in
essence, helped them attain a correct solution. That is,
creating the model or representation was, itself, a highly
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FIGURE 2: Jason’s Model



effective solution strategy. In Figure 3 the work of a 6th
grade student, Joseph, shows that although he is better
able to articulate his thinking, the underlying ideas based
on the context of the problem situation are similar to that
displayed by the 5th grade students Anne and Jason.

These three students provided thoughtful arguments
and justifications (SMP 3), looked for and made use of
the structure in the problem context (SMP 7), but dis-
played varying degrees of precision (SMP 6) in their
representations and arguments, if one solely examines
their written artifacts.

This kind of problem is not a simple exercise for many
middle school students despite having received formal
instruction addressing ratio and proportion as well as
operations with fractions. In fact, more than half of mid-
dle school students asked to solve this problem were not
able to do so successfully and very few of these students
even attempted a visual model or representation in their
effort to find a solution (Olson, Slovin, and Zenigami,
2009). These types of problems have also been found to
present teachers with difficulties when asked to provide a
visual or other descriptive representation that incorporates
minimal symbolic mathematics.

Teacher Thinking
Figures 4, 5, and 6 show the responses of three preservice
teachers. In Figure 4, the preservice teacher presents a

representation of the fractions in the problem but does
not successfully use the model to obtain a solution. This
preservice teacher correctly identifies that 2/5 of the
square meter is yet to be covered, and attempts to use vari-
ous equations, but to no avail. In Figure 5, the preservice
teacher appears to “know” that more than one liter of
paint is needed, and identifies a question that would help
solve the problem: “You need what fraction of 3/4 liter is
needed to complete this painting?” However, this preser-
vice teacher does not use the representation to reason that
2/3 of the 3/4 liter is needed to complete the square meter.
How this reasoning would be useful can be seen in the
preservice teachers’ use of the model where the second
“3/4 liter” is used. The second 3/4 liter covers pieces 4, 5,
and 6 of the square meter; however, only pieces 4 and 5
need to be covered (i.e., 2/3 of the 3/4 liter). There is
appropriate thinking displayed in the work shown in
Figure 5, but the preservice teacher was not able to use the
model to find the solution.

In Figure 6, the preservice teacher makes use of the repre-
sentations to solve and explain the solution to the problem.
This preservice teacher does not rely on a “procedure”
involving symbolic or algebraic manipulations, but rather,
provides reasoning in the context of the relationship
between 1/4 liter and 1/5 square meter. This preservice
teacher showed an understanding of the problem and used
a successful strategy to explain relationships rather than
attempting a solution via a rule, such as 3/4:3/5 as 1:x. In
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FIGURE 3: Joseph’s Work
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FIGURE 4: Work of a preservice teacher who is not able to solve the problem

FIGURE 5: Work of a preservice teacher who employs a model but cannot see how to use it finish solving the problem

FIGURE 6: Work of a preservice teacher who uses a model to solve and explain a correct solution



essence, this teacher’s reasoning is similar to that used in
the 5th grade students’ explanations.

These discussions of teachers’ understandings and abilities
to represent mathematical contexts are consistent with
those of prior research. Such research has shown that
teachers appear to not have coherent ideas on how to start
thinking about the problem; are able to provide initial
thoughts on a solution strategy and use a model up to a
point, but do not go further; or are able to provide solu-
tion strategies similar to those of the middle school stu-
dents highlighted in the earlier discussion of student
thinking (Sjostrom, Olson, and Olson, 2010; Olson and
Olson, 2011).

Commonalities in Student and Teacher
Thinking
In the prior research involving responses of approximately
30 students in Grade 5, 120 students in each of Grades 6 – 8,
40 preservice elementary teachers, and 40 preservice and
inservice teachers of Grades 7 – 12, when a student or
teacher used a visual model or representation to correctly
solve the Painting Problem, the model or representation
was similar to the examples provided. What was it about
the problem or its context that led to the use of a model or
representation? Those using a model or representation
used a unit rate approach, but the presence of a common
numerator may have been instrumental in making that
choice, perhaps making visible a one-to-one correspondence
between the 1/4 liter of paint and 1/5 square meter. It is
our view that the students’ use of one-to-one correspondence
in the examples shared was fundamentally different from
the usual unit rate approach. Importantly, students in
Grade 5 and Grade 6 (pre-CCSSM) likely have not
encountered ratios in any structural or mathematical
sense. Rather, these students (and students like them)
move to a “unit numerator” based on the one-to-one
correspondence inherent in the problem context – that, if
3 will cover 3, then 1 will cover 1. Thus, the numerators
are unitized to make more explicit the one-to-one
correspondence, and not as a matter of procedurally
unitizing a ratio.

Unfortunately, preservice and inservice teachers often rele-
gate the importance of solution strategies that utilize mod-
eling and representations to the realm of “lesser mathe-
matics.” However, the importance of these approaches is

well articulated by Wu (2011) in his discussion of a model
used to solve a problem involving fractions as follows:

We see plainly that there is no need to use multiplica-
tion of fractions for the solution, and moreover, no
need to memorize any solution template. The present
method of solution makes the reasoning very clear”
(pp. 36-37).

Furthermore, the solutions provided by Anne, Jason, and
Joseph exemplify Lamon’s (2001) view that, “current
instruction in fractions grossly underestimates what chil-
dren can do without help.” (p. 153).

This is not to say that using a model or representation
always leads to a correct solution. We saw that some stu-
dents and preservice teachers were able to create an appro-
priate beginning model or representation but were unable
to finish the problem. A common error involved using
common denominators to solve the problem, frequently
adding 15/20 (3/4 liter of paint) with 8/20 (the 2/5 square
meter left to be painted) to achieve an answer of 23/20.
Such solutions suggest a rush to the use of rules and pro-
cedures rather than thoughtful use of the context of the
problem to find a solution that makes sense.

Conclusion
Campbell, Rowan, and Suarez (1998) argue because algo-
rithms are important, teachers should know and be able to
use various strategies for finding a solution, and assist
students in making sense of processes and procedures to
determine if their work is reasonable. In other words, it is
critically important for teachers to “sense-make an algo-
rithm” in various contexts. Through the process of sense
making and conceptually understanding algorithms, we
argue that teachers’ are able to mathematically understand
and engage their students’ misconceptions. We are not
arguing against the importance for teachers and students
to be able to symbolically and procedurally arrive at a
solution to a word problem involving fractions. However,
we suggest that without displaying the ability to under-
stand and use the context of a problem to arrive at a solu-
tion through modeling, foundational and conceptual
mathematical knowledge is likely not well developed.

It is important to understand how the use of modeling
and representations in certain contexts allows for the
appropriate conceptual development of key algorithms.
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For example, when should the algorithm “flip (invert) and
multiply” for division of fractions emerge as contextually
making mathematical sense? In Grade 6 standards (i.e.,
6.NS.1) when fraction division occurs in a “story context”
or by way of “visual fraction models?” Perhaps. Importantly
in this CCSSM standard, the context, associated represen-
tations, and justification for general (algorithmic) relation-
ships between division and multiplication are all essential
components to mathematical sense making.

Additionally, providing a story (or visual) context for
which unit rates are computed with respect to division of
complex fractions, but only as a solution strategy to this
particular contextualized fraction division problem, is
arguably a mathematically appropriate context through
which teachers can extend students conceptions and mis-
conceptions regarding algorithmic procedures. In such a
context, the denominator is inverted and multiplied by the
numerator to find a new rate (numerator) per unit
(denominator). The CCSSM identifies such a context in
Grade 7 (7.RP.1).

Thames and Ball (2010) indicate that, “No one would
argue with the claim that teaching mathematics requires
mathematics knowledge.…by better understanding the
mathematical questions and situations with which teachers
must deal, we would gain a better understanding of the
mathematics it takes to teach” (p. 221). Furthermore,
Keeley and Rose (2006) note that, “Teachers may not be
aware of the misconceptions and alternative ideas their
students hold, and sometimes, they harbor those very
same misconceptions” (p. 6).

There is room for growth in teachers’ understandings of
the use of context, models, and representations in explor-
ing and solving fraction word problems, particularly with
problems that are able to be solved using non-procedural
models and representations. Stylianou (2010) indicates
that teachers conceptions of representation as a process
and practice need further development to include repre-
sentations more successfully in instruction, especially for
non high-performing students. Although there is not uni-
form agreement on the nature of representations,
Stylianou reasons that, “symbolic expressions, drawings,
written words, graphical displays, numerals, and diagrams
are all representations of mathematical concepts” (p. 326).
In this paper, illustrations were provided of how students
and teachers both use models or representations effectively
as solution strategies.

What is it that we as teachers, teacher leaders, and school
leaders can do to help students and teachers reason
through problems such as the Painting Problem and use
representations or models to assist their thinking? To help
students and teachers develop better problem solving abili-
ties related to fractions, we suggest the following.

First, recognize that the development of fraction under-
standing is a challenge and the way we structure the intro-
duction to the use of fractions to students is very impor-
tant. Wilson, Edgington, Nguyen, Pescosolido, and
Confrey (2011) give an indication of a learning trajectory
related to fractions, and indicate that children’s early expe-
riences must provide a solid basis for future applications.

Second, recognize the importance of problems in context.
As shown in the representations and verbal explanations
of Anne and Jason, the words used to situate a problem, if
modeled well, provide direction enough so that students
can successfully solve the problem. As teachers, the respon-
sibility of including such problems in students’ mathemat-
ical experiences lies with us. As noted by Sullivan,
Zevenbergen, and Mousley (2003) in their discussion of
the importance of the context of mathematics tasks, a pri-
mary issue in teaching mathematics is that, “teachers need
to be fully aware of the purpose and implications of using
a particular context at a given time” (p. 111).

Third, reconsider the usefulness of representation and
modeling as viable solution strategies. It is important to
recognize that students need as much practice in these
modeling and representation strategies as they need practice
with procedural and algorithmic strategies. The ability to
model problem situations and arrive at solutions through
the use of those models is not simple or easy to master.
With each model or representation used by a student, a
teacher needs to practice asking, “How does your model or
representation demonstrate what the problem is saying,
and how will you use that to help you understand or solve
the problem?” Abrahamson (2006) notes the following:

…one can use these representations without appreciat-
ing which ideas they enfold and how these ideas are
coordinated. Consequently, learners who, at best, devel-
op procedural fluency with these representations, may
not experience a sense of understanding, because they
lack opportunities to bridge the embedded ideas, even
if these embedded ideas are each familiar and robust.
(p. 464)
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