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Abstract
Debates concerning which ideas should be included in 
the K-12 curriculum, how they are learned, and how they 
should be taught are longstanding . Although the adoption 
of the Common Core State Standards for Mathematics 
largely resolves content-focused aspects of the debates, 
pedagogical decisions remain open to interpretation .  The 
National Council of Teachers of Mathematics and the 
National Council of Supervisors of Mathematics have 
attempted to address this issue with recent calls to action, 
promoting particular instructional practices that represent 
a shared vision of the goal for every mathematics classroom . 
We examine these practices from the perspectives of two 
competing approaches to mathematics instruction—dialogic 
and direct—to ask whether a shared vision is sometimes 
inaccurately presumed, and to press for a common peda-
gogical core that includes not only specifications of observ-
able practices, but also their underlying rationales in terms 
of equitably supporting all students in coming to know and 
do mathematics . 

Introduction

Since the publication of the Curriculum and 
Evaluation Standards for School Mathematics 
in 1989, the National Council of Teachers of 
Mathematics (NCTM) has worked to build and 

promote a consistent vision for learning and teaching 
mathematics that focuses on thinking, reasoning, and 
communicating rather than almost exclusively on memori-
zation and procedural fluency. During that time, research, 
standards documents, policy statements, and curricular 
materials have provided further support for and refine-
ment of this vision. For almost as long, though, this vision 
has been met with resistance. Criticism has been lodged 
on both mathematical and pedagogical grounds, leading 
to longstanding, divisive debates concerning which ideas 
should be included in the K-12 curriculum, how they are 
learned1, and how they should be taught (Klein, 2003; 
Schoenfeld, 2004). 

Recently, content-focused aspects of the debate have been 
largely resolved. The latest standards document, the 
Common Core State Standards for Mathematics (CCSSM; 
Common Core State Standards Initiative [CCSSI], 2010), 
represents an unprecedented agreement across previously 
divided parties regarding K-12 mathematics content2 
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Is there a Common Pedagogical Core?  
Examining Instructional Practices of Competing Models  

of Mathematics Teaching 

Charles Munter, Mary Kay Stein, and Margaret S. Smith, University of Pittsburgh

1 For more on this topic, we refer the reader to Donovan and Bransford (2005). 
2  The consensus to which we refer is primarily among mathematics educators and mathematicians. We acknowledge that in political and 

 popular arenas, the CCSSM have recently come under increased scrutiny. But even there, only a handful of states have not adopted the Standards, 
and recent polling suggests that a majority of adults still support the Standards (Henderson, Peterson, & West, 2015), with any decline in 
 support varying along political lines, which suggests that concerns are likely less about the Standards’ content than implementation.
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(Conference Board of the Mathematical Sciences, 2013; 
NCTM, 2013). Pedagogical decisions, however, remain 
open to interpretation: “[t]he standards themselves do  
not dictate curriculum, pedagogy, or delivery of content” 
(CCSSI, 2010, p. 84). This is to say that the CCSSM  
specify what but not how mathematics should be taught  
in schools. 

Professional mathematics education organizations are 
 trying to address this issue regarding how mathematics 
should be taught. Since the release of the standards, these 
organizations have argued that the CCSSM “will enable 
teachers and education leaders to focus on improving 
teaching and learning, which is critical to ensuring that all 
students have access to a high-quality mathematics pro-
gram and the support that they need to be successful” 
(NCTM, 2010, p. 1). Moreover, the focus on improving 
teaching and learning and ideas about what counts as 
high-quality mathematics instruction have recently been 
reinforced in two publications: Principles to Action: 

Ensuring Mathematical Success for All (NCTM, 2014) and 
It’s TIME: Themes and Imperatives for Mathematics 
Education (National Council of Supervisors of Mathematics 
[NCSM], 2014). Each includes a set of instructional prac-
tices that are meant to define the kind of high-quality 
instruction that represents the goal for every mathematics 
classroom, and of reform and professional development 
efforts (mapped onto each other in Figure 1). The ways 
that such documents and their respective lists are inter-
preted, however, will be influenced by individuals’ current 
practices, perspectives, and institutional settings (EEPA, 
1990). Consequently, these new documents run the risk of 
being interpreted as merely providing new labels (and per-
haps clearer definitions) for what one presumes that s/he 
already does, which can present challenges for those 
charged with effecting and supporting instructional 
change and improvement (Cohen, 1990). 

The purpose of this article is to make the case that specifi-
cations of professional practices, such as those offered by 
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FIGURE 1.  
NCSM’s (2014) “Research-affirmed instructional practices” mapped onto NCTM’s (2014) “Mathematics teaching practices”

“Mathematics teaching practices” (NCTM, 2014) “Research-affirmed instructional practices” (NCSM, 2014)

Establish mathematics goals to focus learning

Implement tasks that promote reasoning and problem 
solving

Embed the mathematical content they are teaching in contexts to 
connect the mathematics to the real world

Use and connect mathematical representations Provide multiple representations—for example, models, diagrams, 
number lines, tables and graphs, as well as symbols—of all mathe-
matical work to support the visualization of skills and concepts

Facilitate meaningful mathematical discourse Create language-rich classrooms that emphasize terminology, vocabu-
lary, explanations and solutions

Pose purposeful questions Respond to most student answers with “why?,” “how do you know 
that?,” or “can you explain your thinking?”

Build procedural fluency from conceptual understanding

Support productive struggle in learning mathematics Elicit, value, and celebrate alternative approaches to solving mathe-
matics problems to that students are taught that mathematics is a 
sense-making process for understanding why and not memorizing the 
right procedure to get the one right answer

Elicit and use evidence of student thinking Devote the last five minutes of every lesson to some form of forma-
tive assessments, for example, an exit slip, to assess the degree to 
which the lesson’s objective was accomplished

Conduct daily cumulative review of critical and prerequisite skills and 
concepts at the beginning of every lesson

Take every opportunity to develop number sense by asking for, and 
justifying, estimates, mental calculations and equivalent forms of 
numbers

Demonstrate through the coherence of their instruction that their 
lessons—the tasks, the activities, the questions and the assess-
ments—were carefully planned
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the NCTM (2014) and NCSM (2014), should be viewed 
not as collections of what are often referred to as instruc-
tional strategies or best practices, but rather as represent-
ing approaches to teaching mathematics that are coherent 
and consistent with respect to perspectives on what it 
means to know and do mathematics and how children 
learn it (Donovan & Bransford, 2005). In so doing, we 
raise the question of whether the achievement of a shared 
instructional vision is sometimes inaccurately presumed, 
and offer suggestions for avoiding that pitfall. It is our 
view that making the CCSSM a reality in our nation’s 
classrooms will require establishing a genuine, common 
pedagogical core among all members of the educational 
system, which includes not only specifications of observ-
able practices, but also their underlying rationales in terms 
of equitably supporting all students in coming to know 
and do mathematics.  

Over the last few years we have sought to better under-
stand and clarify the distinctions between two competing 
models of instruction: dialogic and direct. Both are coher-
ent and consistent with respect to particular commitments 
to students’ learning; but, in our view, of the two, only 
dialogic instruction aligns with the vision promoted by 
NCTM and NCSM. After describing our process for spec-
ifying distinct instructional models, we present and com-
pare the resulting models. Then, we turn to the recent calls 
to action noted previously to consider them from the per-
spectives of these competing approaches to mathematics 
instruction, concluding with suggestions for mathematics 
education leaders and other stakeholders. 

Methods
We sought to specify distinct models of mathematics 
instruction, beginning with different commitments to 
what it means to know and do mathematics, theories of 
learning, and perspectives on teaching. We did so with an 
eye toward an eventual comparative research study of the 
effectiveness of different instructional models, but first 
and foremost to understand—and draw clear distinctions 
between—viable alternatives to mathematics teaching. 

To aid in this effort, we convened five meetings that 
brought together 26 mathematicians, educators, psycholo-
gists, and learning scientists, each time separated into two 
groups representing different perspectives on learning and 
instruction (see the appendix for a list of participants). 
Each meeting focused on some aspect of preparatory 

work for the eventual study. Two meetings were devoted 
to defining what it means to know and learn mathematics 
and specifying distinct instructional models—which, as a 
result, we came to refer to as dialogic and direct. By focus-
ing the initial meetings on the articulation of the theories 
of learning and teaching on which the two instructional 
models are built, subsequent discussions of curriculum 
and assessment, professional development, and imple-
mentation could then be framed in terms of the models’ 
underlying theories.

Each meeting consisted of a combination of simultaneous 
small group discussions among proponents of the same 
model and whole group discussions in which each group 
shared the essence of their discussion with members of 
the other group—not with the goal of reaching consensus, 
but of identifying exactly how their perspectives differ. 
All meetings were audio recorded and all artifacts created 
for and during the meetings were archived.  Following 
each meeting, a summary was produced and vetted by the 
authors.  The summary was then shared with participants, 
feedback was solicited, and a revised version of the sum-
mary was created.

Instructional Models
Based on the input of the experts at the meetings we con-
vened, we specified two distinct mathematics instructional 
models. Below we provide abbreviated descriptions of 
what teaching entails in each, preceded by brief summaries 
of the perspectives on knowing and learning mathematics 
that underpin the respective pedagogies, and followed by a 
discussion of their similarities and differences. (Complete 
descriptions of the models are available upon request. A 
fuller description of this work is reported in Munter, Stein, 
and Smith, in press.) 

Knowing and Learning
In general, advocates of both models viewed two prominent 
consensus documents—the National Research Council’s 
five strands of mathematical proficiency (Kilpatrick, 
Swafford, & Findell, 2001) and the CCSSM (both content 
and practice standards)—as reasonable representations of 
knowing and doing mathematics, but emphasized different 
aspects of those strands and practices. For example, the 
direct instruction model does not emphasize the commu-
nication aspect of the third Standard for Mathematical 
Practice (SMP). Although a good student may have an 
internal dialogue concerning other aspects of that standard, 
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communicating effectively with others is not a necessary 
capability. In the dialogic model, communicating effectively 
with others is fundamental to knowing (and learning). 
Similarly, in the direct instruction model, to “make con-
jectures and build a logical progression of statements to 
explore the truth of their conjectures” (CCSSI, 2010, p. 6) 
is limited to trying strategies for solving a problem posed 
to the students; student questions that drive instruction or 
lead to new mathematical investigations are not empha-
sized as they are in the dialogic model. 

Although their goals are similar, the two models attempt 
to achieve them by offering different learning opportunities 
to students. In the direct instruction model, when students 
have the prerequisite conceptual and procedural knowl-
edge, they will learn from (a) watching clear, complete 
demonstrations of how to solve problems, with accompa-
nying explanations and accurate definitions; (b) practicing 
similar problems sequenced according to difficulty; and  
(c) receiving immediate, corrective feedback. Whereas in 
the dialogic model, students must (a) actively engage in 
new mathematics, persevering to solve novel problems; 
(b) participate in a discourse of conjecture, explanation, 
and argumentation; (c) engage in generalization and 
abstraction, developing efficient problem-solving strategies 
and relating their ideas to conventional procedures; and, 
to achieve fluency with these skills, (d) engage in some 
amount of practice. The pedagogies by which these oppor-
tunities are afforded are described separately in the next 
sub-section.

Pedagogy
Direct instruction. In the direct instruction model,  typical 
lessons include (a) the teacher’s descriptions of an objective, 
motivating reasons for achieving the objective, and con-
nections to previous topics; (b) presentation of requisite 
concepts; (c) demonstration of how to complete the target 
problem type; and (d) scaffolded phases of guided and 
independent practice, accompanied by corrective  feedback. 

During guided practice, the teacher invites the class to 
solve similar problems (perhaps with some students work-
ing them at the board), answering students’ questions, and 
correcting errors. In order to transition into independent 
practice, the teacher might begin by priming students’ 
work through minimally prompted presentation (e.g., 
completing the first two steps in solving a problem), and 
gradually withdraw that support. During independent 

practice, the teacher’s feedback should focus on how 
strategies need to be corrected (rather than emphasizing 
that mistakes have been made), and should not interrupt 
students’ thinking. For example, after a student has solved 
a problem, the teacher might tell the student what s/he 
did accurately, and what needs to be modified in order to 
achieve a complete, accurate solution. 

Across these phases, lessons should be captivating, which 
can be accomplished through keeping a brisk instructional 
pace, inviting group unison responses to questions, and 
providing focused praise. Lessons should also be interac-
tive. For example, after students have solved a number of 
fraction multiplication problems using number lines and 
area models, the teacher could draw attention to the rule,  

To do so, teachers might invite students to state 
whether they have noticed a pattern, since it is likely that 
in solving the progressively difficult problems one or more 
students will have developed an efficient algorithm. 
Interacting with students in such a way is good for class-
room relationships, keeping students on task, and making 
the environment more interesting. However, who articu-
lates such a pattern is not important, only that it gets 
 articulated (by someone).

Dialogic instruction. In the dialogic instruction model, 
although instruction will not fit a particular pattern with-
in every lesson, it should, over time, provide coherent 
sequences of opportunities for students to engage in tasks 
that have been carefully designed to surface particular 
mathematical ideas and to build new understandings from 
previous knowledge. This requires teachers to:

a)  have access to and be able to make use of learning 
progressions—sensible (preferably research-based) 
paths by which students are likely to reach a set of 
explicit learning goals given a particular instructional 
sequence;

b)  engage students in two main types of tasks: 1) tasks 
that initiate students to new ideas and deepen their 
understanding of concepts, and 2) tasks that help 
them become more competent with what they already 
know (with type 2 tasks generally not preceding type 
1 tasks); 

c)  orchestrate productive discussions that make math-
ematical ideas available to all students and steer 
 collective understandings toward the mathematical 
goal of the lesson;

6
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d)  introduce tools and representations that have longevity 
(i.e., can be used repeatedly over time for different 
purposes, as students’ understanding grows); and

e)  sequence the necessarily varied types of class-
room activities in a way that consistently positions 
 students as autonomous learners and users of math-
ematics, each an agent who has and is developing 
mathematical authority in the classroom.

A key aspect of this model is the flexible use of multiple 
representations, which should be used by students to 
think with rather than being limited to illustrate concepts. 
Equally important to the effective use of multiple represen-
tations is encouraging discussion that translates between 
representations, making explicit the relations between 
them, including those that are considered standard. Along 
these lines, with regard to coordinating the use of repre-
sentations with instructional goals, there are times when 
it is beneficial for students to be able to choose which 
 r epresentation to use and other times when constraining 
students to the use of a particular representation will bet-
ter accomplish the learning goals (with the former more 
often the case early in the development of a new topic).

An inherent challenge of this model is affording learning 
opportunities that are emergent through instruction that 
is systematic (see the description in Figure 2 about creativ-
ity). This seeming contradiction is reconciled by ensuring 
that the paths that any given group of students’ learning 
take eventually lead to (at least) the mathematical goals of 
a particular instructional sequence or grade level. By flexi-
bly following students’ reasoning, the teacher can build on 
their initial thinking to move toward ideas important to 
both students and the discipline. 

Similarities
Specifying and comparing these two models has revealed 
both differences and similarities. Regarding the latter, we 
found that in both models, both conceptual understanding 
and procedural fluency are not only valued as important 
forms of knowledge, but are viewed as being developed 
together. Additionally, we found that both models empha-
size using carefully designed, purposefully sequenced, 
mathematically rigorous tasks; closely monitoring stu-
dents’ reasoning; and providing regular opportunities for 
practice—although the purpose and nature of those tasks, 
those student diagnoses, and that practice may differ 
between the models. 

Differences
Previously, we alluded to differences between the two 
models with respect to classroom talk, group work, learning 
progressions, mathematical tasks, representations, and 
the role and timing of feedback. In Figure 2, we summa-
rize these differences as well as three additional areas of 
distinction: students’ classroom roles and mathematical 
creativity; the introduction and role of definitions; and the 
purpose of diagnosing student thinking. Although abbre-
viated, we present the differences in table form to allow 
for more direct comparisons conceptually, and to provide 
a tool for teachers’ and teacher leaders’ reflection and 
 conversation. 

(Re)Considering “High-Quality” from 
Competing Perspectives

As alluded to previously, NCTM and NCSM, two promi-
nent professional organizations in mathematics education, 
have each recently published calls to action (NCSM, 2014; 
NCTM, 2014), including lists of research-based instruc-
tional practices that represent the goal for how mathematics 
should be taught in classrooms (see Figure 1). Not sur-
prisingly, there is considerable overlap in the lists, which 
symbolizes the consensus that has developed by these 
organizations over time. However, advocates of different 
approaches to instruction would, at least in name, likely 
embrace a majority of these practices. In some cases, it 
may be that an instructional practice transcends pedagogy. 
For example, “establish[ing] mathematics goals to focus 
learning” (NCTM, 2014, p. 12) and enacting “carefully 
planned” lessons (NCSM, 2014, p. 30) are important in 
both dialogic and direct approaches to instruction, and for 
similar reasons.  

In other cases, however, the summaries presented in 
Figure 2 suggest that very different instructional mod-
els may employ similar practices, but in different ways 
and for different purposes. For example, related to the 
NCTM’s practice of “implement[ing] tasks that promote 
reasoning and problem solving” (2014, p. 17), the NCSM 
(2014) authors suggested, specifically, that teachers should 
“embed the mathematical content they are teaching in 
contexts to connect the mathematics to the real world” 
(p. 30). From a dialogic perspective, one key purpose of 
this practice is to provide opportunities to mathematize 
familiar contexts (Putnam, Lampert, & Peterson, 1990), 
quantifying relations in order to solve problems by distill-
ing the mathematical essence of a situation and deciding 

7
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FIGURE 2.  
Major distinctions between dialogic and direct mathematics instruction

Dialogic Instruction Distinction Direct Instruction

Fundamental to both knowing and learning math-
ematics. Students need opportunities in both 
small-group and whole-class settings to talk 
about their thinking, questions, and arguments. 

The importance and 
role of talk

Most important during the guided practice phase, 
when students are required to explain to the teacher 
how they have solved problems in order to ensure 
they are encoding new knowledge. 

Provides a venue for more talking and listening 
than is available in a totally teacher-led lesson. 
Students should have regular opportunities to 
work on and talk about solving problems in col-
laboration with peers. 

The importance  
of and role of  
group work

An optional component of a lesson; when employed, 
it should follow guided practice on problem solving, 
focus primarily on verifying that the procedures that 
have just been demonstrated work, and provide addi-
tional practice opportunities. 

Dictated by both disciplinary and developmental 
(i.e., building new knowledge from prior knowl-
edge) progressions. 

The sequencing  
of topics

Dictated primarily by a disciplinary progression (i.e., 
prerequisites determined by the structure of mathe-
matics). 

Two main types of tasks are important: 1) tasks 
that initiate students to new ideas and deepen 
their understanding of concepts (and to which 
they do not have an immediate solution), and 2) 
tasks that help them become more competent 
with what they already know (with type 2 gen-
erally not preceding type 1 and both engaging 
students in reasoning).

The nature 
and  ordering of 

 instructional tasks

Students should be given opportunities to use 
and build on what they have just seen the teach-
er demonstrate by practicing similar problems, 
sequenced by difficulty. Tasks afford opportunities to 
develop the ability to adapt a procedure to fit a novel 
situation as well as to discriminate between classes 
of problems (the more varied practice students do, 
the more adaptability they will develop). 

Students should be given time to wrestle with 
tasks that involve big ideas, without teachers 
interfering to correct their work. After this, feed-
back can come in small-group or whole-class 
settings; the purpose is not merely correcting 
misconceptions, but advancing students’ grow-
ing intellectual authority about how to judge the 
correctness of one’s own and others’ reasoning. 

The nature, timing, 
source, and purpose 

of feedback

Students should receive immediate feedback from 
the teacher regarding how their strategies need to 
be corrected (rather than emphasizing that mis-
takes have been made). In addition to one-to-one 
feedback, when multiple students have a particular 
misconception, teachers should bring the issue to 
the entire class’s attention in order to correct the 
misconception for all. 

Students’ learning pathways are emergent. 
Students should make, refine, and explore con-
jectures on the basis of evidence and use a vari-
ety of reasoning and proof techniques to confirm 
or disprove those conjectures (CCSS-M-SMP 3), 
asking questions that drive instruction and lead 
to new investigations. 

The emphasis on 
creativity

Students’ learning pathways are predetermined and 
carefully designed for. To “make conjectures and 
build a logical progression of statements to explore 
the truth of their conjectures” (CCSS-M-SMP 3) is 
limited to trying solution strategies for solving a 
problem posed to them.

Students’ thinking and activity are consistent 
sources of ideas of which to make deliberate 
use: by flexibly following students’ reasoning, 
the teacher can build on their initial thinking to 
move toward important ideas of the discipline.

The purpose of 
diagnosing student 

thinking

Through efficient instructional design and close mon-
itoring (or interviewing), the teacher should diagnose 
the cause of errors (often a missing prerequisite 
skill) and intervene on exactly the component of the 
strategy that likely caused the error.

Students participate in the defining process, 
with the teacher ensuring that definitions are 
mathematically sound and formalized at the 
appropriate time for students’ current under-
standing. 

The introduction  
and role of 
 definitions

At the outset of learning a new topic, students 
should be provided an accurate definition of relevant 
concepts.

Representations are used not just for illustrating 
mathematical ideas, but also for thinking with. 
Representations are created in the moment 
to support/afford shared attention to specific 
pieces of the problem space and how they inter-
connect.

The nature and  
role of 

 representations

Representations are used to illustrate mathematical 
ideas (e.g., introducing an area model for multi-digit 
multiplication after teaching the algorithm), not to 
think with or to anchor problem-solving conversations.
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when mathematical modeling is appropriate. In a direct 
instructional approach, however, this instructional practice 
is likely employed to give students opportunities to develop 
the ability to adapt a procedure to fit a novel situation as 
well as to get better at discriminating between types of 
problems. The goals that underlie the use of real world 
problems have implications for how a lesson is struc-
tured. What may be used in dialogic instruction to initiate 
an idea through mathematizing may be used in direct 
instruction to solidify an idea and support the develop-
ment of adaptability. 

Similarly, both direct and dialogic instruction advocates 
would likely agree that teachers should “elicit and use evi-
dence of student thinking . . . to assess progress toward 
mathematical understanding and to adjust instruction 
continually in ways that support and extend learning” 
(NCTM, 2014, p. 53), perhaps even with an exit slip 
during “the last five minutes of every lesson” (NCSM, 
2014, p. 30). However, as the descriptions in Figure 2 sug-
gest, the reasons for employing such practices differ across 
competing instructional models. In direct instruction, the 
teacher should consistently work to diagnose the cause 
of students’ errors (e.g., a missing prerequisite skill) and 
intervene on exactly the component of the strategy that 
likely caused the error, which is typically achieved through 
efficient instructional design and close monitoring or 
interviewing. Alternatively, teachers taking a dialogic 
approach treat students’ thinking and activity as sources of 
ideas on which they, the classroom community, can build 
to move toward important mathematical ideas. In this 
case, the emphasis is on not only whether but also how 
students understand an idea. 

Both of these recent calls to action refer to a “shared 
vision” of high-quality mathematics instruction, which 
they represent with lists of “practices.” The two examples 
above, however, illustrate how particular instructional 
practices can be interpreted differently and enacted for dif-
ferent purposes, depending on the instructional approach 
in which they are being used. This fact calls into question 
what it is that is “shared” when we refer to a shared vision. 
More importantly, though, it points to the importance of 
talking about, attempting, and reflecting on such practices 
in terms of the underlying goals we have for mathematical 
activity in the classroom and children’s learning, a point to 
which we return in the discussion section.

Discussion
In this article, we have presented abbreviated versions 
of two instructional models, identified differences in the 
models’ goals for students’ learning and the ways by which 
the models are intended to achieve their goals, and exam-
ined currently promoted instructional practices from the 
perspectives of those competing models. To be clear, we 
do not claim that the two models we have described are 
the two, only that they are different. But their differences 
are not evidenced simply by the instructional practices 
that they employ: teachers in dialogic classrooms may 
very well demonstrate some procedures, just as students 
in a direct instruction classroom may very well engage in 
project-based activities. Our conjecture is that it is not a 
matter of the particular instructional practices, necessar-
ily, but rather when the practice is used, the purpose for 
employing a particular practice, and how the practices 
within each model fit together into a cohesive whole that is 
important. For example, a teacher in a dialogic classroom 
may demonstrate a procedure, but only after students have 
developed an understanding of the concept and are able 
to connect the procedure to its underlying mathematical 
meaning. Hence the practice, while on the surface may 
be similar to what you might find in a direct instruction 
classroom, potentially leads to a very different learning 
outcome.

Identifying high-quality instructional practices helps to 
clarify and solidify what we are working to achieve in 
every mathematics classroom; but identifying distinctions 
between competing instructional models—even idealized 
versions—helps to clarify why teachers might employ 
those practices. Thus, we argue that specifications of 
high-quality instruction must include the identification of 
both instructional practices and the underlying rationales 
for employing those practices. 

Our call for a more complete specification of high-quality 
instruction has implications for multiple stakeholders. For 
example, although it is as yet unclear whether it is possible 
or necessary to pursue a shared instructional vision across 
an entire school district, recent research suggests that, for 
those who choose to initiate district-wide improvement 
efforts, a coherent, well-articulated instructional vision is 
foundational (Cobb & Jackson, 2011). Without well-com-
municated and agreed-upon goals for students’ learning, 
along with the specification of and rationale for particular 
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instructional practices for achieving those goals, the basis 
for leaders’ decisions will be tenuous. For example, leaders 
may select instructional materials, district- and school-
based professional development, formative assessments, or 
interventions for struggling students that match the super-
ficial features of dialogic instruction but that are aligned 
to a different underlying theory of how students learn. To 
maximize the coherence of the system, each of the above 
decisions must align with and support the enactment of a 
clear instructional vision. If we begin with a specification 
such as those provided in this article, the adequacy of 
decisions regarding all other aspects of an instructional 
system can be measured against that vision.

Considering the distinctions we have drawn can also be 
helpful to teachers and those directly supporting teachers. 
Articulating the rationales underlying our instructional 
choices can help get beyond the promotion of particular, 
so-called teaching strategies or best practices to careful 
reflection on how and why particular strategies or practices 
are used. We offer two suggestions for doing so. First, we 
echo numerous other educators and researchers in rec-
ommending an emphasis on the CCSSM SMP as the kind 
of mathematical activity in which we want to support 
students in participating. But within that emphasis, we 
recommend that teachers and leaders approach the SMP as 
both an end and a means—not just the goal for what stu-
dents will eventually do, but the kind of activity in which 
they need to engage now so that they can learn mathemat-
ics. In addition, paralleling the holistic interpretation of 
NCTM’s (2014) and NCSM’s (2014) instructional practices 
that we have promoted, we recommend that teachers and 
leaders avoid the temptation to emphasize some SMP to 
the exclusion of others, and instead treat the practices 
as interrelated parts of a whole—all necessary to define 
authentic disciplinary engagement. 

Second, as stated previously, a majority of the practices 
identified in the NCTM (2014) and NCSM (2014) reports 
would likely be embraced by advocates of different instruc-

tional approaches—but not all. For example, as indicated 
by the distinctions in Figure 2, at least two of the eight 
practices identified in the NCTM report would not be 
emphasized by advocates of direct instruction: “support 
productive struggle in learning mathematics” and “facili-
tate meaningful mathematical discourse” (p. 10). In direct 
instruction, corrective feedback is provided as soon as 
possible so that students are not left to struggle; and, 
although interaction is encouraged, participating in math-
ematical discourse is not emphasized as a goal or valued 
as a strong learning support as it is in dialogic instruction. 
Because these two practices are incompatible with a direct 
instruction approach, they stand apart from the others in 
their potential as anchors for developing and promoting a 
particular instructional vision. For example, professional 
development efforts could focus specifically on affording 
opportunities for productive struggle in solving complex 
tasks (Stein, Grover, & Henningsen, 1996; Smith & Stein, 
1998) or on orchestrating productive mathematical discus-
sions (Smith & Stein, 2011; Stein, Engle, Smith, & Hughes, 
2008), and make explicit how the other practices are in 
service of, or at least related to, those two key practices. 

Conclusion
The authors of the CCSSM (CCSSI, 2010) were inten-
tionally silent on the topic of pedagogy. Since that time, 
researchers and practitioners have been converging on 
a definition of high-quality mathematics instruction, as 
comprised of particular instructional practices. These 
efforts have recently been amplified by calls to action by 
the NCTM (2014) and the NCSM (2014). The models 
described in this article represent two distinct perspec-
tives on how instructional practices characterized as high 
quality might be interpreted and enacted. Examining and 
reflecting on our goals, teaching, and professional devel-
opment efforts through these lenses can help us move past 
the presumption of a shared vision to the work of estab-
lishing a genuine, common pedagogical core. ✪
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Appendix

Participants in the Meetings Hosted at the University of Pittsburgh*

Participant Area Institution
Sybilla Beckmann Mathematics University of Georgia

Jo Boaler Mathematics education Stanford University

Diane Briars Mathematics education Past President, National Council of Supervisors of 
Mathematics (NCSM)

Richard Clark Educational psychology University of Southern California

David Cordray Psychology Vanderbilt University

Mark Driscoll Mathematics education EDC

Janet Fender Professional development My Direct Instruction Consultant LLC

Anne Garrison Mathematics education Vanderbilt University

James Greeno Learning sciences University of Pittsburgh

James Hiebert Mathematics education University of Delaware

John Hollingsworth Classroom instruction President, DataWORKS Educational Research

Mary Ann Huntley Mathematics education Cornell University

Ken Koedinger Cognitive psychology Carnegie Mellon University 

William McCallum Mathematics University of Arizona

John Opfer Psychology The Ohio State University

Randolph Philipp Mathematics education San Diego State University

Frank Quinn Mathematics Virginia Tech 

Anna Sfard Mathematics education University of Haifa, Israel

Alan Siegel Computer science New York University

Edward Silver Mathematics education University of Michigan

Jon Star Educational psychology / 
Mathematics education

Harvard University

Marcy Stein Education University of Washington Tacoma

W. Stephen Wilson Mathematics Johns Hopkins University

Michael Winders Mathematics Worcester State University

Hung-Hsi Wu Mathematics University of California at Berkeley

Judith Zawojewski Mathematics education Illinois Institute of Technology

 
Facilitators: Charles Munter, Mary Kay Stein, and Margaret Smith, University of Pittsburgh

* Although all participants reviewed the full descriptions of the instructional models, inclusion of an individual’s name on the 
above list is not to imply that the individual necessarily agrees with the additional assertions made in this paper. Information 
listed was current at the time of the meetings.
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